SECONDARY SCHOOL ANNUAL EXAMINATIONS 2009

Directorate for Quality and Standards in Education Educational Assessment Unit

TIME: 30 minutes Non-Calculator Paper

Name: \qquad Class: \qquad

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
Mark											

Instructions to Candidates

- Answer all questions.
- This paper carries a total of $\mathbf{2 5}$ marks.
- Calculators and protractors are not allowed.

1. Complete :
a) $2.6 \times \square=26$
b) $0.08 \times 10^{2}=$ \qquad
c) $7 \cdot 8+0 \cdot 2=$ \qquad d) $4 \cdot 04 \div 2=$ \qquad
2. Where must each of the digits 2 be placed to give the largest answer

for this multiplication?
(1 mark)
3. Work out: a) $7 \times(8-2)$

Ans: \qquad
b) Find the value of: $2(p-q)$ when $p=10$ and $q=6$.

Ans: \qquad

Diane

Helen, Gary and Diane are playing a dice game.
In this dice game the numbers on the top faces are multiplied together to find the score.
a) What is their score?
(i) Helen's score \qquad \times \qquad $=$ \qquad
(ii) Gary's score \qquad \times \qquad $=$ \qquad
(iii) Diane's score \qquad \times \qquad $=$ \qquad
b) Who gets the highest score?

Ans: \qquad
5. a) Which of the following fractions are equivalent to $\frac{3}{4}$?

$$
\frac{303}{304}, \frac{75}{100}, \frac{42}{56}
$$

Ans: \qquad
b) The arrow is a fraction of the whole line. What is the fraction, in its simplest form?

6. The area of this triangle is about

(i) $200 \mathrm{~cm}^{2}$
(ii) $100 \mathrm{~cm}^{2}$
(iii) 180 cm
(iv) $200 \mathrm{~cm}^{3}$
7. Fill in the missing numbers in the sequences.
a) Write four more multiples of 5 greater than 20. \qquad 30 \qquad 50
b) Write four more odd numbers
greater than 23. \qquad 29 \qquad 33 \qquad
c) Norma thinks of a number.

She says: (i) It is a multiple of 5 greater than 20.
(ii) It is also an odd number greater than 23.
(iii) The sum of its digits is 8 .

What is her number?
Ans: \qquad
8. A shop has two special offers this week.

Offer 1:

Ms Delia needs to buy 2 pairs of shoes. These cost $€ 34$ and $€ 36$.
(a) How much will Ms Delia save if she chooses Offer 1?

Ans: \qquad
(b) Which is the better offer, Offer 1 or Offer 2?

Ans: Offer
9.

A picture 8 cm long and 4 cm wide has a frame 1 cm wide. What are the outer dimensions of the frame?

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total Main	Non Calc	Global Mark
Mark																			

DO NOT WRITE ABOVE THIS LINE

Name: \qquad Class: \qquad

- Answer all questions.
- This paper carries 75 marks.
- Calculators and mathematical instruments are allowed but all necessary working must be shown.

1. It helps to use a calculator in this question.
a) Which of the following is a square number?
(i) 161
(ii) 225
(iii) 1689
b) Work out:
(i) $17^{3}=$ \qquad (ii) $\frac{5}{8}+\frac{9}{20}=$
\qquad
(iii) $(4 \cdot 15-2 \cdot 25)^{2}=$
2. a) Divide the line into 2 parts in the ratio of $1: 3$.
b) The ratio of home supporters to away supporters at a football match is $\mathbf{6 : 1}$. There are 18000 home supporters. What is the number of away supporters?

Ans: \qquad
c)

What fraction of the square is shaded?
Ans: \qquad
(3 marks)
3. a) Three of these numbers are between $\mathbf{2 \cdot 3}$ and $\mathbf{3 \cdot 2}$. Which are they?
$2 \cdot 31$
3.23
$2 \cdot 36$
3.22
$2 \cdot 03$
$3 \cdot 02$
b)

(i) What decimal numbers are shown by the arrows on the number line?
A = \qquad B = \qquad
(ii) $\mathbf{C}=\mathbf{0 . 4 3}$. Show this number on the above number line.
(iii) Round the number \mathbf{B} correct to 1 decimal place.

Ans: B = \qquad (correct to 1 d.p.)
4.

Party Fruit Punch			
700 ml	ginger ale	280 ml	sugar syrup
280 ml	strong tea	160 ml	lemon juice
560 ml	orange juice	lemon	lices

Mark the volumes of the ingredients for this Fruit Punch in the measuring jugs.
The first one is done for you.

ginger ale

strong tea

orange juice

sugar syrup

lemon juice
\qquad
\qquad
5.

This quadrilateral is a rhombus.
a) Find the marked angles:
$x=$ \qquad \circ
$y=$ \qquad ${ }^{\circ}$
$z=$ \qquad ${ }^{\circ}$
b) Complete the repeat command in LOGO to draw the shape if each side is $\mathbf{5 0}$ turtle steps long.

$$
\text { PD REPEAT }_{\ldots}{ }^{[}\left[\mathrm{FD} 50 \mathrm{RT}_{\ldots} \mathrm{FD}_{\ldots} \mathrm{RT}_{\ldots}\right]
$$

6.

a) The shape in the grid has \qquad line/s of symmetry. $(0,1,2,3,4)$
b) It has rotational symmetry of order \qquad . (1, 2, 3, 4)
c) Make a tessellation using this shape. (Draw at least 6 more shapes.)
7. a) The probability of four people going abroad these summer holidays is shown below.

i) Who is most likely to be going abroad this summer? \qquad
ii) Is Paula likely or unlikely to go abroad? Explain.
\qquad
iii)What is Ali's probability of going abroad? \qquad
7. b) A bag contains counters of different colours: red, black, yellow and orange.

Mona takes out a counter without looking.
She records its colour and replaces it.
She does this several times. These are her results:

Colour	Red	Black	Yellow	Orange
Frequency	7	3	8	5

i) How many times in all does Mona draw a counter? \qquad times.
ii) From Mona's results, what is the probability that she draws a black counter?
\qquad
8. The pie chart below shows how Michael uses his $€ \mathbf{2 4}$ pocket money.

a) How much does he spend on games?
\qquad
b) What fraction does he save?

c) Michael shows how he uses his $€ 24$ pocket money on a bar chart. Complete the bar chart.

9. Line (\mathbf{p}) and line (\mathbf{q}) are shown in the grid below.

a) Complete the coordinates of the points that lie on line (p). (1,5$)(4$, \qquad) (\qquad , 0)
b) Complete the equation of line (p) using \boldsymbol{x} and \boldsymbol{y}. \qquad $=6$
c) Write the coordinates of any 2 points that lie on line (q). \qquad , _) (_ , ,__)
d) Write the coordinates of the point where line (\mathbf{p}) and line (\mathbf{q}) meet. \qquad , _)
10. Patrick is 8 years old and his sister Anna is 4 years older.
a) Write and simplify the ratio of Patrick's age to Anna's age.
\qquad :
b) Uncle John gives them $\mathbf{€ 1 0 0}$ to share in the ratio of their ages.

How much does Patrick receive?
$€$ \qquad
11. a) Describe triangle \mathbf{D} using two of the following terms:

Triangle D is:
\qquad and \qquad

b) Reflect triangle \mathbf{D} in the y axis.

Label it \mathbf{E}.
c) Rotate the triangle \mathbf{D} about O through 180°.

Label it F.
d) Translate triangle $\mathbf{D}, \mathbf{3}$ down.

Label it G.
12.

a) Sandra is weighing some tins, using scales.

The tins weigh x kg each.
Which equation represents the scales shown?
(It helps if you remove brackets first.)
(i) $4(x+1)-x=10$
(ii) $4(x-1)=10$
(iii) $3 x+4 x=10$
(iv) $4 x+3=10$

The right equation is \qquad
b) Solve the equation: $3 p-5=2 p+6$

$$
p=
$$

13. a) Write down and simplify an expression for the perimeter of the quadrilateral.

Perimeter $=$ \qquad cm
c) Miriam said that when $x=1 \mathrm{~cm}, y=1 \mathrm{~cm}$. Is this possible? Explain. Yes/No,
14. a) Using ruler and compasses only, make an accurate drawing of the triangle XYZ.

\qquad
b) Measure side YZ and angle Y

$$
\mathrm{YZ}=\ldots \mathrm{cm} \quad \text { angle } \mathrm{Y}=\ldots
$$

15. a) Karl is at point K.
(i) What does he see when he faces South West?
(ii) Write as a three figure bearing the position of the hospital from Karl.

b) Find the value of \boldsymbol{b} and \boldsymbol{c} in the diagram.

$b=$ \qquad。
$c=$ \qquad。
16.

Pattern
1

Pattern
2

Pattern
3
Pattern
4
a) Draw pattern 4 .
b) Continue: Each pattern has \qquad rectangles more than the one before it.
c) How many rectangles will there be in the $6^{\text {th }}$ pattern? \qquad rectangles.

