

New England
Common Assessment Program

Released Items 2011

Grade 8
Mathematics

Mathematics

Items with this symbol were selected from Session One-no calculators or other mathematics tools allowed.

(1) A bacteria sample is placed under a microscope. The length of one bacterium is 4.6×10^{-4} millimeters. What is this measurement written in standard form?
A. 0.000046 mm
B. 0.000460 mm
C. 0.460000 mm
D. 0.461040 mm

(2) Jim traveled 10 kilometers in 20 minutes. At that rate, how far would he travel in one hour?
A. 10 kilometers
B. 20 kilometers
C. 30 kilometers
D. 60 kilometers
(3) Look at this circle.

What is the approximate area of the circle?
A. 77 square centimeters
B. 154 square centimeters
C. 308 square centimeters
D. 615 square centimeters
(4) Jason is planning a checkers tournament. This table shows how many games will be played for different numbers of players.

Checkers Tournament

Number of Players	Number of Games
2	1
3	3
4	6
5	10
6	15

Based on the pattern in the table, how many games will be played if there are 9 players in the tournament?
A. 21
B. 25
C. 36
D. 38
(5) The diagram below shows the steepness of a ramp.

Rise: 2 ft
Length: 12 ft
Which statement describes the ramp's steepness?
A. The ramp rises 1 foot for every 6 feet of length.
B. The ramp rises 6 feet for every 1 foot of length.
C. The ramp rises 1 foot for every 10 feet of length.
D. The ramp rises 10 feet for every 1 foot of length.
(6) The graph below shows the number of pages a copy machine prints over time.

At what rate does the copy machine print the pages?
A. 1 page every 15 minutes
B. 3 pages every 2 minutes
C. 6 pages every $\frac{1}{2}$ minute
D. 15 pages every 1 minute
(7) The price of a sweater is s dollars. The price of a pair of boots is b dollars. The price of the sweater is $\$ 10$ less than 2 times the price of the pair of boots. Which equation relates the price of the sweater to the price of the pair of boots?
A. $s=10-2 b$
B. $s=2 b-10$
C. $s=(10-2) b$
D. $s=2(b-10)$

8 Which expression is not equivalent to $20(n-5)$?
A. $20 n-5$
B. $20 n-100$
C. $(n-5) \times 20$
D. $20 \times n-20 \times 5$

9 This table shows the distance Deana rode her bike on each of six days.

Day	1	2	3	4	5	6	7
Miles	3	6	4	7	8	10	

How many miles must Deana ride on Day 7 to have a mean distance of 6 miles per day for these seven days?
A. 2 miles
B. 4 miles
C. 6 miles
D. 7 miles
(10) These squares appear on a computer screen.

The computer will randomly choose a point within the 10 -inch square. What is the probability that the point will be within the shaded square?
A. 0.16
B. 0.25
C. 0.40
D. 0.50
(11) Look at these numbers.

$$
\begin{array}{lll}
\frac{3}{4} & 35 \% & 0.3
\end{array}
$$

Copy this number line into your Student Answer Booklet.

Place the numbers in the correct order on the number line.
(12) Solve this equation.

$$
\frac{y}{4}-4=5
$$

(13) This chart shows the percent of students from each of two schools who play in the school band.

School	Percent of Students in the Band
Lakeview	5%
Mountainside	20%

a. A total of 40 students are in the Lakeview band. How many students attend Lakeview School?
b. Explain how it is possible for the band at Mountainside to have fewer members than the band at Lakeview.
(14) The perimeter of a square is 40 inches. The length of each side of the square is $4 x-2$ inches. What is the value of x ? Show or explain how you found your answer.
(15) The shapes of these three greeting cards are similar rectangles. The cards are not drawn to scale.

Card 3

a. What is the length, in inches, of the side labeled w on Card 2? Show your work or explain how you know.
b. The area of Card 2 is how many times as great as the area of Card 1? Show your work or explain how you know.
c. The sides of Card 3 are n times as long as the sides of Card 1 . The area of Card 3 is how many times as great as the area of Card 1? Show your work or explain how you know.

