Part I

Answer all 28 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

1 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If
Use this space for
computations. $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?
(1) 28
(3) 3
(2) $10 \frac{3}{4}$
(4) $\frac{1}{2}$

2 What is the negation of the statement "The Sun is shining"?
(1) It is cloudy.
(2) It is daytime.
(3) It is not raining.
(4) The Sun is not shining.

3 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at
(1) $(7,1)$
(3) $(3,2)$
(2) $(5,3)$
(4) $(1,-1)$

Use this space for computations.

4 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?
(1) $A C=C B$
(3) $A C=2 A B$
(2) $C B=\frac{1}{2} A B$
(4) $A C+C B=A B$

Use this space for computations.

5 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=-x+2 \\
y=x^{2}
\end{gathered}
$$

6 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?
(1) Planes P and R are skew.
(2) Planes P and R are parallel.
(3) Planes P and R are perpendicular.
(4) Plane P intersects plane R but is not perpendicular to plane R.

7 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?
(1) $m \angle 1=m \angle 2$
(3) $\overline{P R} \cong \overline{R Q}$
(2) $m \angle 1=m \angle 3$
(4) $\overline{P S} \cong \overline{R Q}$

8 The figure in the diagram below is a triangular prism.

Which statement must be true?
(1) $\overline{D E} \cong \overline{A B}$
(3) $\overline{A D} \| \overline{C E}$
(2) $\overline{A D} \cong \overline{B C}$
(4) $\overline{D E} \| \overline{B C}$

Use this space for computations.

9 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$, and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?
(1) $\mathrm{m} \angle A=\mathrm{m} \angle B$
(3) $\mathrm{m} \angle A C B=90$
(2) $m \angle A=m \angle C$
(4) $\mathrm{m} \angle A B C=60$

10 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

(1) $\angle F A B \cong \angle A B F$
(3) $\overline{C E} \cong \overline{E A}$
(2) $\angle A B F \cong \angle C B D$
(4) $\overline{C F} \cong \overline{F A}$

Use this space for computations.

11 In the diagram below, circle O has a radius of 5 , and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?
(1) 12
(3) 8
(2) 10
(4) 4

12 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?
(1) $y=2 x+5$
(3) $y=\frac{1}{2} x+\frac{25}{2}$
(2) $y=2 x-5$
(4) $y=-\frac{1}{2} x-\frac{25}{2}$

Use this space for computations.

13 Line segment $A B$ has endpoints $A(\underline{2,-3})$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?
(1) $(-2,3)$
(3) $(-1,3)$
(2) $\left(-1,1 \frac{1}{2}\right)$
(4) $\left(3,4 \frac{1}{2}\right)$

14 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?
(1) center $=(A, B)$; radius $=C$
(2) center $=(-A,-B)$; radius $=C$
(3) center $=(A, B)$; radius $=\sqrt{C}$
(4) center $=(-A,-B)$; radius $=\sqrt{C}$

15 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?
(1) $x+4$
(3) 3
(2) $x+2$
(4) $x^{2}+6 x+8$

16 Lines k_{1} and k_{2} intersect at point E . Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?
(1) Lines k_{1} and k_{2} are perpendicular.
(2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
(3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
(4) Line m is coplanar with lines k_{1} and k_{2}.

Use this space for computations.

17 In the diagram below, $\overline{P S}$ is a tangent to circle O at point S, $\overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)

What is the length of $\overline{P S}$?
(1) 6
(3) 3
(2) 9
(4) 27

18 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?
(1) up
(3) left
(2) down
(4) right

Use this space for computations.

19 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be
(1) 5
(3) 19
(2) 12
(4) 25

20 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?
(1) $(x-2)^{2}+(y-3)^{2}=16$
(2) $(x-2)^{2}+(y-3)^{2}=4$
(3) $(x+2)^{2}+(y+3)^{2}=16$
(4) $(x+2)^{2}+(y+3)^{2}=4$

Use this space for computations.

21 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}, S$ is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that $\triangle P R T \sim \triangle S R Q$?
(1) AA
(3) SAS
(2) ASA
(4) SSS

22 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are
(1) parallel
(2) perpendicular
(3) the same line
(4) neither parallel nor perpendicular

23 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2} \circ T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?
(1) $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
(2) $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
(3) $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
(4) $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

Use this space for computations.

24 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?
(1) 1
(3) 3
(2) 2
(4) 4

25 In which triangle do the three altitudes intersect outside the triangle?
(1) a right triangle
(2) an acute triangle
(3) an obtuse triangle
(4) an equilateral triangle

26 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?
(1) Their areas have a ratio of $4: 1$.
(2) Their altitudes have a ratio of $2: 1$.
(3) Their perimeters have a ratio of $2: 1$.
(4) Their corresponding angles have a ratio of $2: 1$.

Use this space for computations.

(1) 45°
(3) 120°
(2) 60°
(4) 135°

28 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?
(1) $\frac{5}{3}$
(3) $-\frac{3}{5}$
(2) $\frac{3}{5}$
(4) $-\frac{5}{3}$

Part II

Answer all 6 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

29 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

30 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

31 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$. Find the length of $\overline{P Q}$.

32 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

33 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

34 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent."

Identify the new statement as the converse, inverse, or contrapositive of the original statement.

Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

35 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$.
If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph.

Explain why $\overline{G H} \| \overline{D E}$.

36 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}, \overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \mathrm{m} \overparen{E G}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

