Part I

Answer all 28 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

AC = 5x + 13 and $BD = 11x - 5$, what is the value of x?

- (1) 28(3) 3
- $(4) \frac{1}{2}$ (2) $10\frac{3}{4}$

2 What is the negation of the statement "The Sun is shining"?

- (1) It is cloudy.
- (2) It is daytime.
- (3) It is not raining.
- (4) The Sun is not shining.
- **3** Triangle ABC has vertices A(1,3), B(0,1), and C(4,0). Under a translation, A', the image point of A, is located at (4,4). Under this same translation, point C' is located at
 - (1) (7,1)(3) (3,2)
 - (2) (5,3)(4) (1,-1)

- Use this space for computations.
- 4 The diagram below shows the construction of the perpendicular bisector of \overline{AB} .

Which statement is *not* true?

(1) $AC = CB$	(3) AC = 2AB
(2) $CB = \frac{1}{2}AB$	(4) AC + CB = AB

- Use this space for computations.
- **5** Which graph could be used to find the solution to the following system of equations?

- **6** Line *k* is drawn so that it is perpendicular to two distinct planes, *P* and *R*. What must be true about planes *P* and *R*?
 - (1) Planes *P* and *R* are skew.
 - (2) Planes P and R are parallel.
 - (3) Planes P and R are perpendicular.
 - (4) Plane P intersects plane R but is not perpendicular to plane R.

Geometry Sampler – Fall 08

7 The diagram below illustrates the construction of \overrightarrow{PS} parallel to \overrightarrow{RQ} through point *P*.

Use this space for computations.

Which statement justifies this construction?

(1) $m \angle 1 = m \angle 2$	(3) $\overline{PR} \cong \overline{RQ}$
(2) $m \angle 1 = m \angle 3$	$(4) \ \overline{PS} \cong \overline{RQ}$

8 The figure in the diagram below is a triangular prism.

Which statement must be true?

(1) $\overline{DE} \cong \overline{AB}$ (3) $\overline{AD} \parallel \overline{CE}$ (2) $\overline{AD} \cong \overline{BC}$ (4) $\overline{DE} \parallel \overline{BC}$ **9** The vertices of $\triangle ABC$ are A(-1,-2), B(-1,2), and C(6,0). Which conclusion can be made about the angles of $\triangle ABC$?

Use this space for computations.

- (1) $m \angle A = m \angle B$ (3) $m \angle ACB = 90$
- (2) $m \angle A = m \angle C$ (4) $m \angle ABC = 60$
- **10** Given $\triangle ABC$ with base \overline{AFEDC} , median \overline{BF} , altitude \overline{BD} , and \overline{BE} bisects $\angle ABC$, which conclusion is valid?

(1) $\angle FAB \cong \angle ABF$ (3) $\overline{CE} \cong \overline{EA}$ (2) $\angle ABF \cong \angle CBD$ (4) $\overline{CF} \cong \overline{FA}$

- and Use this space for computations.
- **11** In the diagram below, circle *O* has a radius of 5, and CE = 2. Diameter \overline{AC} is perpendicular to chord \overline{BD} at *E*.

What is the length of \overline{BD} ?

- (1) 12 (3) 8
- (2) 10 (4) 4
- 12 What is the equation of a line that passes through the point (-3,-11) and is parallel to the line whose equation is 2x y = 4?
 - (1) y = 2x + 5(2) y = 2x - 5(3) $y = \frac{1}{2}x + \frac{25}{2}$ (4) $y = -\frac{1}{2}x - \frac{25}{2}$

13 Line segment *AB* has endpoints A(2,-3) and B(-4,6). What are the coordinates of the midpoint of \overline{AB} ?

Use this space for computations.

- (1) (-2,3) (2) $\left(-1,1\frac{1}{2}\right)$ (3) (-1,3) (4) $\left(3,4\frac{1}{2}\right)$
- 14 What are the center and radius of a circle whose equation is $(x-A)^2 + (y-B)^2 = C$?
 - (1) center = (A,B); radius = C
 - (2) center = (-A, -B); radius = *C*
 - (3) center = (A,B); radius = \sqrt{C}
 - (4) center = (-A, -B); radius = \sqrt{C}
- **15** A rectangular prism has a volume of $3x^2 + 18x + 24$. Its base has a length of x + 2 and a width of 3. Which expression represents the height of the prism?
 - (1) x + 4 (3) 3 (2) x + 2 (4) $x^2 + 6x + 8$

- Use this space for computations.
- **16** Lines k_1 and k_2 intersect at point E. Line *m* is perpendicular to lines k_1 and k_2 at point E.

Which statement is always true?

- (1) Lines k_1 and k_2 are perpendicular.
- (2) Line *m* is parallel to the plane determined by lines k_1 and k_2 .
- (3) Line *m* is perpendicular to the plane determined by lines k_1 and k_2 .
- (4) Line *m* is coplanar with lines k_1 and k_2 .

17 In the diagram below, \overline{PS} is a tangent to circle O at point S, \overline{PQR} is a secant, PS = x, PQ = 3, and PR = x + 18.

(Not drawn to scale)

What is the length of \overline{PS} ?

- (1) 6 (3) 3
- (2) 9 (4) 27
- **18** A polygon is transformed according to the rule: $(x, y) \rightarrow (x + 2, y)$. Every point of the polygon moves two units in which direction?
 - (1) up (3) left
 - (2) down (4) right

19 In the diagram below of $\triangle ABC$, *D* is a point on \overline{AB} , AC = 7, AD = 6, and BC = 18.

The length of \overline{DB} could be

- (1) 5 (3) 19
- (2) 12 (4) 25
- **20** The diameter of a circle has endpoints at (-2,3) and (6,3). What is an equation of the circle?
 - (1) $(x-2)^2 + (y-3)^2 = 16$
 - (2) $(x-2)^2 + (y-3)^2 = 4$
 - (3) $(x + 2)^2 + (y + 3)^2 = 16$
 - (4) $(x + 2)^2 + (y + 3)^2 = 4$

21 In the diagram below of $\triangle PRT$, Q is a point on \overline{PR} , S is a point on \overline{TR} , \overline{QS} is drawn, and $\angle RPT \cong \angle RSQ$.

Which reason justifies the conclusion that $\triangle PRT \sim \triangle SRQ$?

- (1) AA (3) SAS
- (2) ASA (4) SSS
- **22** The lines 3y + 1 = 6x + 4 and 2y + 1 = x 9 are
 - (1) parallel
 - (2) perpendicular
 - (3) the same line
 - (4) neither parallel nor perpendicular
- **23** The endpoints of \overline{AB} are A(3,2) and B(7,1). If $\overline{A''B''}$ is the result of the transformation of \overline{AB} under $D_2 \circ T_{-4,3}$ what are the coordinates of A'' and B''?
 - (1) A"(-2,10) and B"(6,8)
 - (2) *A*"(-1,5) and *B*"(3,4)
 - (3) A''(2,7) and B''(10,5)
 - (4) A''(14,-2) and B''(22,-4)

24 In the diagram below, circle *A* and circle *B* are shown.

What is the total number of lines of tangency that are common to circle A and circle B?

- (1) 1 (3) 3
- (2) 2 (4) 4
- 25 In which triangle do the three altitudes intersect outside the triangle?
 - (1) a right triangle
 - (2) an acute triangle
 - (3) an obtuse triangle
 - (4) an equilateral triangle
- **26** Two triangles are similar, and the ratio of each pair of corresponding sides is 2 : 1. Which statement regarding the two triangles is *not* true?
 - (1) Their areas have a ratio of 4:1.
 - (2) Their altitudes have a ratio of 2:1.
 - (3) Their perimeters have a ratio of 2:1.
 - (4) Their corresponding angles have a ratio of 2:1.

27 What is the measure of an interior angle of a regular octagon?

- (1) 45° (3) 120°
- $(2) 60^{\circ}$ $(4) 135^{\circ}$

28 What is the slope of a line perpendicular to the line whose equation is 5x + 3y = 8?

- (3) $-\frac{3}{5}$ (4) $-\frac{5}{3}$ (1) $\frac{5}{3}$
- (2) $\frac{3}{5}$

Geometry Sampler – Fall 08

Part II

Answer all 6 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

29 In the diagram below of right triangle *ACB*, altitude \overline{CD} intersects \overline{AB} at *D*. If AD = 3 and DB = 4, find the length of \overline{CD} in simplest radical form.

30 The vertices of $\triangle ABC$ are A(3,2), B(6,1), and C(4,6). Identify and graph a transformation of $\triangle ABC$ such that its image, $\triangle A'B'C'$, results in $\overline{AB} \parallel \overline{A'B'}$.

31 The endpoints of \overline{PQ} are P(-3,1) and Q(4,25). Find the length of \overline{PQ} .

32 Using a compass and straightedge, construct the bisector of the angle shown below. [*Leave all construction marks*.]

33 The volume of a cylinder is 12,566.4 cm³. The height of the cylinder is 8 cm. Find the radius of the cylinder to the *nearest tenth of a centimeter*.

34 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent."

Identify the new statement as the converse, inverse, or contrapositive of the original statement.

Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

35 On the set of axes below, graph and label $\triangle DEF$ with vertices at D(-4,-4), E(-2,2), and F(8,-2).

If *G* is the midpoint of \overline{EF} and *H* is the midpoint of \overline{DF} , state the coordinates of *G* and *H* and label each point on your graph.

Explain why $\overline{GH} \parallel \overline{DE}$.

36 In the diagram below of circle *O*, chords \overline{DF} , \overline{DE} , \overline{FG} , and \overline{EG} are drawn such that $\widehat{mDF} : \widehat{mFE} : \widehat{mEG} : \widehat{mGD} = 5 : 2 : 1 : 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

