Intermediate Mathematics Provincial Assessment 2009					
Last Name:	First Name:	MI:			
Teacher:					
School:	School District:				

IMPORTANT

You will have to complete your name and school information in three places:

- (1) On this sheet (above)
- (2) On the bubble sheet
- (3) On the cover of your Student Booklet

Please ensure the information in each of these places in completed correctly and clearly. Your bubble sheet will be placed inside this Section 1 Insert for mailing. Pay particular attention that the bubble sheet and insert information are correct.

Section 1: Non-Calculator Section

You will need a pencil, paper, and ruler for this section. You are <u>not permitted the use of a calculator</u>.

Questions 1 to 7 require you to write, draw, or graph your responses in the space provided in this booklet. Do not use your bubble sheet for these questions. Section 1 should take about 20 minutes.

Your teacher will collect Section 1 when everyone is finished and will then give you Section 2. You will need your bubble sheet for Section 3 only.

Section 1 Insert

1. Factor completely: $16xy^2 - 8x^2y$

___ out of 1 mark

2. Calculate $(7.0 \times 10^7) \div (3.5 \times 10^{-5})$ expressing your answer in scientific notation.

___ out of 1 mark

3. Simplify: $(4x^2 - 5xy - 6y^2) - (8xy + 4y^2 + 5x^2)$

4. Using the axes provided, graph the line having a slope of $-\frac{2}{3}$ and a *y*-intercept of 4.

___ out of 1 mark

5. Solve: 8x < 3x + 7

6. Solve: 2(x+3) - 3 = -3x + 8

___ out of 1 mark

7. Calculate: $-2 + \frac{2}{3} \times 12$

Intermediate Mathematics Provincial Assessment 2009					
Last Name:	First Name:	MI:			
Teacher:					
School:	School District:				

IMPORTANT

Please ensure the information in each of these

places is completed correctly and clearly.

You will have to complete your name and

school information in four places:

(1) On Section 1 and 2

(2) On the bubble sheet

(3) On the cover of your Student Booklet

Section 2: Written Response Questions

You will need a pencil, paper, and ruler for this section. You are <u>permitted the use of a calculator</u>.

Questions, 8-11 require you to write, draw, or graph your responses in the space provided in this booklet. Do not use your bubble sheet for these questions. Section 2 should take about 20 minutes.

Your teacher will collect Section 2 when everyone is finished and will then give you Section 3 (a larger work booklet containing the rest of the questions). You will need your bubble sheet for Section 3.

Formulae

Volume of a Cone:	$V = \frac{1}{3}\pi r^2 h$
Volume of a Sphere:	$V = \frac{4}{3}\pi r^3$
Volume of a Cylinder:	$V = \pi r^2 h$
Surface Area of a Sphere:	$SA = 4\pi r^2$
Surface Area of a Cone:	$SA = \pi r^2 + \pi rs$
Slant Height of a Cone:	$r^2 + h^2 = s^2$

Please note that all formulae may not be needed on any given assessment.

Section 2 Insert

8. Alice marked out the following triangles to determine the length of the pond, \overline{AB} .

(A) Write a similarity relation.

(B) Create and solve an equation to determine the length of the pond, \overline{AB} .

9. Sam walks toward a motion sensor.

The distance from the sensor is determined by the equation

d = -2t + 8

where *d* represents distance in metres and *t* represents time in seconds.

(A) Complete the table of values.

(B) Graph the information from the above table.

(C) What is the *d*-intercept and what does it represent?

10. Determine the area of the shaded region for the figure shown in simplest form.

- 11. Wax is melted to form a cone-shaped candle with a radius of 8 cm and a height of 15 cm.
 - (A) Calculate the slant height.

(B) Determine how much wrapping material is needed to completely cover the candle if there is no overlap (to the nearest cm²). Use $\pi = 3.14$.

(A)	< -6 -5	-4	-3	-2	-1	0	1	2
(B)	< 1 1 -6 -5	-4	- 0 - -3	-2	-1	0	1	2
(C)	< 1 1 -6 -5	-4	-3	-2	• -1	0	1	2
(D)	-6 -5	-4	-3	-2	-1	0	1	2

12. Which graph represents the inequality $\{x | x > -3, x \in I\}$?

13. $-2\frac{3}{4}$ is a member of which two number sets?

- (A) Irrational, Integer
- (B) Rational, Integer
- (C) Real, Irrational
- (D) Real, Rational
- 14. Which shows the set arranged from smallest to largest? $\left\{\frac{11}{4}, 2\frac{2}{3}, -5, -\sqrt{10}\right\}$
 - (A) $\left\{-5, -\sqrt{10}, \frac{11}{4}, 2\frac{2}{3}\right\}$
 - (B) $\left\{-5, -\sqrt{10}, 2\frac{2}{3}, \frac{11}{4}\right\}$
 - (C) $\left\{-\sqrt{10}, -5, 2\frac{2}{3}, \frac{11}{4}\right\}$
 - (D) $\left\{\frac{11}{4}, 2\frac{2}{3}, -\sqrt{10}, -5\right\}$

- 15. A square has an area of 200cm². What are the lengths of each side, in centimetres, in simplest radical form?
 - (A) $2\sqrt{10}$
 - (B) $2\sqrt{50}$
 - (C) $10\sqrt{2}$
 - (D) $40\sqrt{2}$
- 16. Movie rentals are \$1 for old releases and \$2 for new releases. Which represents the total income for each type of movie during Friday and Saturday?

Old Releases]	New Releases					
		Comedy	Horror			Comedy	Horror			
Friday		125	75		Friday	300	200			
Saturday		175	25		Saturday	400	300			
(A)	(425 575	275 325)								
(B)	$\binom{550}{750}$	$\binom{350}{350}$								
(C)	$\binom{725}{575}$	275 325)								
(D)	$\binom{725}{975}$	$\binom{475}{625}$								

Number of Rentals

17. Write $[5^3 \times 5^5]^2$ as a single power.

(A) 5¹⁰

- (B) 5¹⁶
- (C) 5¹⁷
- (D) 5³⁰

18. Simplify: $\frac{a^3 \times a^{-2}}{a^7}$ (A) $\frac{1}{a^{13}}$ (B) $\frac{1}{a^6}$ (C) a^6 (D) a^8

19. If the perimeter of the triangle is 9x + 6, what is the length of the third side?

- (A) 6x + 5
- (B) 6x + 7
- (C) 12x + 5
- (D) 12x + 7

20. What is the opposite of 3x - 2xy + 5y?

- (A) -3x + 2xy 5y
- $(B) \quad -3x 2xy + 5y$
- (C) 3x + 2xy 5y
- (D) 5y 2xy + 3x

- 21. The area of a rectangle is $x^2 2x 24$. What are the dimensions?
 - (A) (x+4) by (x-6)
 - (B) (x-4) by (x+6)
 - (C) (x+4) by (x+6)
 - (D) (x-4) by (x-6)
- 22. Expand and simplify: (x 5)(2x + 1)
 - (A) $2x^2 5$
 - (B) $2x^2 4x 5$
 - (C) $2x^2 9x 5$
 - (D) $2x^2 11x 5$
- 23. David walked to the store. The graph represents his distance from home over time. During what time interval is David walking the fastest?

- 24. Simplify: $\frac{15x^{3}y^{3} 10x^{2}y^{2} + 5xy^{2}}{5xy}$ (A) $3x^{2}y^{2} 2xy + 1$ (B) $15x^{3}y^{3} 10x^{2}y^{2}$
 - $(C) \quad 3x^2y^2 2xy + y$
 - (D) $3x^2y^2 10x^2y^2 + 5xy^2$
- 25. How many shaded circles would exist in Diagram 7?

- (A) 14
- (B) 64
- (C) 127
- (D) 128

26. The table represents the height, in centimetres, of a plant each week. Which formula represents the plant growth?

Time	Height				
(<i>t</i>)	(<i>h</i>)				
1	15				
2	18				
3	21				
4	24				
5	27				

- (A) h = t + 3
- (B) h = t + 14
- (C) h = 3t + 12
- (D) h = 15t

27. Which table represents a parabolic relation?

(A)							
	х	1	2	3	4	5	6
	у	$\frac{1}{9}$	$\frac{2}{\frac{1}{3}}$	1	3	9	27
(B)							
	Х	1	2	3	4	5	6
	У	2	2 4	8	16	32	64
(C)							
	Х	1	2 7	3	4	5	6
	у	5	7	9	11	13	15
(D)							
	Х	1	2	3	4	5	6
	у	3	2 6	11	18	27	38

28. Which line is described by the equation y = 3x - 2?

- (A) A
- (B) B
- (C) C
- (D) D
- 29. The volume of a rectangular pyramid is 120 cm³. What is the volume of a rectangular prism having the same base area and height, in cm³?
 - (A) 40
 - (B) 120
 - (C) 160
 - (D) 360
- 30. A water balloon of spherical shape has a diameter of 25 cm when filled. How much water can the balloon hold when filled completely, to the nearest cm³?
 - (A) 1963
 - (B) 7850
 - (C) 8177
 - (D) 65 417

- 31. Evaluate $2x^3 xy$ for x = -2, y = 3.
 - (A) –22
 - (B) -10
 - (C) 10
 - (D) 22

32. Which triangle is unique? B_B

- 33. Given $\Delta XYZ \cong \Delta RNM$, which statement must be true?
 - (A) $\angle X = \angle N$
 - (B) $\angle Y = \angle N$
 - (C) $\overline{X}\overline{Y} = \overline{R}\overline{M}$
 - (D) $\overline{YZ} = \overline{RN}$

34. A surveyor made the measurements as shown in the diagram below. How wide is the river (\overline{AB}) , in metres?

35. Given the diagram as shown, what is the length of \overline{PQ} , in centimetres?

36. Which statement is true?

- (A) If \triangle ABC $\sim \triangle$ XYZ, then the two triangles are always congruent.
- (B) If \triangle ABC $\sim \triangle$ XYZ, then the two triangles are never congruent.
- (C) If \triangle ABC $\sim \triangle$ XYZ, then the two triangles are always similar.
- (D) If \triangle ABC $\sim \triangle$ XYZ, then the two triangles are never similar.

- 37. A point P (3, -5) is rotated 90° clockwise about the origin.What are the coordinates of the image point, P'?
 - (A) (-3, 5)
 - (B) (-3, -5)
 - (C) (5, 3)
 - (D) (-5, -3)

- 38. \triangle ABC has coordinates A(-5, 1), B(-1, 2), and C(-3, 2). \triangle ABC undergoes the translation (x - 2, y + 3) followed by the translation (x + 1, y + 2), to give the image \triangle A"B"C". What single translation maps \triangle ABC onto \triangle A"B"C"?
 - (A) $(x, y) \to (x 3, y 1)$
 - (B) $(x, y) \to (x 3, y + 5)$
 - (C) $(x, y) \to (x 1, y 1)$
 - (D) $(x, y) \to (x 1, y + 5)$

39. Which scatter plot has an approximate line of best fit of y = -2x?

40. Which line or curve drawn best fits the data in the scatter plot?

41. What is the probability of spinning a vowel on the spinner and rolling a number greater than 2 on a standard 6-sided die?

- (A) 10%
- (B) 13%
- (C) 15%
- (D) 20%
- 42. A bag contains 2 pink and 3 green marbles. What is the probability of picking two green marbles in a row if the first is not replaced before the second is picked?
 - (A) $\frac{3}{10}$ (B) $\frac{6}{25}$ (C) $\frac{9}{25}$ (D) $\frac{9}{20}$

End of the Assessment